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A B S T R A C T

Automatic methods of seafloor mapping are still in their early stage of development, despite the technical
progress made in recent years. A serious imperfection is the limited types of predictor features available for
seabed classification. It is therefore desirable to introduce new class of spectral features to benthic habitat
mapping. In this study, we introduced eight spectral features of a rough seafloor surface that were indicative of
better seabed classification. We compared them with traditional secondary features, like terrain variables and
textural features. The suitability of 48 variables was tested, and the most important features were identified. The
selected variables were used to perform a supervised object-based image analysis using four machine learning
algorithms. We found that backscatter was the strongest predictor, followed by several spectral features from
bathymetry that appeared more predictive than bathymetry itself. The highest overall accuracy of predictive
model reached approximately 86% using the support vector machine classifier. The innovative results of this
study suggest further application of the spectral features for predictive benthic habitat mapping, including re-
search based on multi-frequency multibeam echosounder datasets. The utilisation of spectral features derived
from bathymetry provide an important step towards more accurate maps of benthic habitats and seabed sedi-
ments composition.

1. Introduction

The ocean floor is the least explored surface of Earth. At present, it is
estimated that less than 15% of the seafloor has been mapped in detail.
On the other hand, the surfaces of the Moon and Mars have been
mapped in significantly greater detail (Jones, 1999). Global initiatives,
such as Seabed 2030 of the General Bathymetric Chart of the Oceans
group, aim to change this state of knowledge by mapping the entire
seabed by the year 2030 (Mayer et al., 2018).

Apart from side-scan based seafloor analyses, remote sensing mea-
surements of the seabed surface have often employed multibeam
echosounder (MBES) systems. Originally, MBES equipment was de-
signed to collect measurements of the seafloor bathymetry, which al-
lowed for the generation of digital elevation models (DEMs) of the
seabed. In the early 1990s, an MBES was developed that could measure
the backscattering strength from the seafloor based on its

corresponding properties (Lamarche and Lurton, 2017). Recent re-
commendations have suggested concurrent acquisition of bathymetry
and seafloor backscatter strength (or a related variable), as well as
further generation of georeferenced grids of bathymetry and co-regis-
tered backscatter mosaics (Schimel et al., 2018).

1.1. Multibeam echosounder features and their impact on benthic habitat
mapping studies

Terrestrial remote sensing studies often benefit from many features
derived from different sensors, for instance, spectral or multi-spectral
signatures, textural derivatives, or various indices (e.g. the Normalised
Difference Vegetation Index). In this study, we used the term ‘feature’ in
its typical sense with respect to remote sensing literature, as it is a
predictor variable extracted from the remote sensing data for its usage
in image classification (Diesing et al., 2016). Moreover, hereinafter, the
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term ‘spectral’ has been used as a descriptor of the rough seafloor
surface.

Recent benthic habitat mapping studies have underlined the utili-
sation of different features of MBES bathymetry and backscatter data
(Diesing et al., 2016; Lecours et al., 2016; Held and Schneider von
Deimling, 2019). Special attention has been paid to the geomorpho-
metric analysis of bathymetry (Goff and Jordan, 1988; Wilson et al.,
2007; Micallef et al., 2012; Li et al., 2016; Diesing and Thorsnes, 2018;
Gafeira et al., 2018; Lucieer et al., 2018), textural analysis of back-
scatter (Montereale-Gavazzi et al., 2017; Prampolini et al., 2018;
Samsudin and Hasan, 2017), and multi-scale analysis, including the
geographic context of MBES datasets (Lecours et al., 2015; Misiuk et al.,
2018; Porskamp et al., 2018). For example, Conti et al. (2019) used
different feature categories (from bathymetry, texture, optical proper-
ties, and object-based shape) for the classification of a cold-water coral
mound based on MBES and a high-resolution video mosaic. Ad-
ditionally, Janowski et al. (2018a) extracted sixteen features of bathy-
metry and nine object-based features of backscatter to execute the
mapping of seabed sediments in the Polish coastal area of the southern
Baltic Sea. Furthermore, Rattray et al. (2015) introduced wave ex-
posure as an oceanographic predictor variable for the mapping of high
energy temperate reefs in Victoria, Australia.

Recent reviews of literature emphasise the need for new features for
benthic habitat mapping (Diesing et al., 2016). It is known that en-
vironmental factors, such as light penetration in the water column,
primary productivity, hydrodynamics, temperature, salinity, and
oxygen concentration determine the distribution of habitats on the
seabed (Brown et al., 2011). However, modelled features representing
these factors are typically generated in spatial and temporal scales that
are very different (e.g. often significantly larger) from those of MBES
datasets, thereby limiting their applicability. On the other hand, sec-
ondary features extracted from MBES bathymetry and backscatter are
directly related to the spatial and temporal extent of their counterparts.
The development of new features may allow for a better understanding
of the environmental processes occurring on and/or influencing the
seabed, and proper application may increase predictive power and
improve classification accuracy.

Spectral parameters have been successfully used to classify sediment
types using single beam echosounder registrations (Tegowski et al.,
2003). Previous research on spectral features of MBES bathymetry has
indicated their utility for a detailed description of roughness and sea-
floor geomorphology, as well as the classification of seafloor sediments.
Additionally, they have been used for benthic habitat mapping using
Principal Components Analysis to reduce correlated data and the Fuzzy
C-means clustering algorithm with a declared number of three classes
(Tegowski et al., 2018). In this study, we presented and evaluated eight
spectral features derived from bathymetry and applied them for the
classification of the seabed using object-based image analysis (OBIA).
These parameters originated from two-dimensional fast Fourier trans-
formation (2D FFT). Lyons et al. (2002) described one of the first ap-
plications of this method for seabed characterisation with high-resolu-
tion, in which the photogrammetric method (stereoscopic photograph)
was utilised; a three-dimensional model of the bottom surface was
generated using this approach. Application of the 2D FFT allowed for
the spatial distribution of the power spectral density of the surface
heights to be obtained. The same technique has been applied in several
other studies (e.g. Briggs et al., 2005). Moreover, this method was
improved upon and applied to the analysis of high-resolution bathy-
metry from modern hydroacoustic measurements, including the appli-
cation of a MBES (e.g. Cazenave et al., 2008; Lefebvre et al., 2009).
Schönke et al. (2017) used 2D Fourier transform to describe the mi-
croroughness of the seabed based on underwater laser line scanning in
the southeastern North Sea.

Classification of the seabed substrata and benthic habitats is one of
the main tasks necessary for the spatial planning of the marine en-
vironment. In addition to providing crucial information for the

establishment of Marine Protected Areas, such actions are within the
main aims of Descriptor 6 of the Marine Strategy Framework Directive
2008/56/EC, which is related to seafloor integrity. In general, these
actions assume the development of standardised methods for seabed
mapping and monitoring. Although recent studies include proposals for
the working procedures of benthic habitat mapping or the development
of habitat classification schemes, diversity of specific environmental
conditions (e.g. depth or sediment types), causes that they are still only
valid for strict spatial areas (Strong et al., 2019).

1.2. Multi-frequency multibeam echosounder studies

A recent trend in benthic habitat mapping is the use of multi-fre-
quency MBES data. Bottom backscattering strength registered by
echosounder strongly depends on the frequency of the emitted signal,
its true incidence angle, seabed roughness, and geo-acoustic properties
of the seafloor. The dependency of backscatter strength on frequency
has been observed in laboratory and field studies with various re-
sponses from different sediment types exhibited (e.g. Jackson et al.,
1986; Urick, 1983). Recent habitat mapping studies have emphasised
the use of multi-frequency MBES datasets for better discrimination
between seabed types (Feldens et al., 2018; Gaida et al., 2018; Janowski
et al., 2018b; Fakiris et al., 2019).

High-frequency pulses allow for the detecting smaller objects and
seabed structures; however, such pulses are strongly attenuated, thus
limiting the sonar range. Low-frequency signals are not as attenuated;
they can penetrate deeper into the sediments below the seafloor, but
they are less sensitive to small features and weak boundaries with a
slight change in acoustic impedance, such as the boundary between
water and mud. Overall, acoustic images (especially of seafloor sedi-
ments) that are recorded at several frequencies often provide more
information with respect to the physical and biological characteristics
of seabed habitats compared with that of a single-frequency (Feldens
et al., 2018; Gaida et al., 2018; Janowski et al., 2018b; Fakiris et al.,
2019Finer sediments, such as sands and silts, are more sensitive to
acoustic frequencies than coarser sediments, such as gravel, shells, or
boulders (Jackson et al., 1986; Williams et al., 2009; Hefner et al.,
2010; Gaida et al., 2018).

In this study, we focused on the spectral features derived from
bathymetry, which was considered independent of the frequency. Most
applicable for this approach were MBES, which delivered bathymetry,
as well as co-registered and geolocated backscatter of the seabed. In this
study, we did not focus on multi-spectral MBES, although we used
several frequencies to enlarge our feature space. Our objectives were as
follows: (1) to introduce eight spectral features of a rough seafloor
surface, (2) to evaluate the importance of spectral features for benthic
habitat mapping, and (3) to classify benthic habitats and estimate the
accuracy of classification, including the input from spectral features.

2. Materials and methods

2.1. Study site

The study site was situated in a shallow area off the Polish coast of
the southern Baltic Sea. The water depth ranged between 3.8 and
20.1 m below sea level (Fig. 1). The site was in direct proximity to
Slowinski National Park and partially located within a Natura 2000
area, which protects marine areas up to 10 m below sea level. In the
research area, six classes of benthic habitats were present, including flat
areas of very fine sand with traces of worm burrows (VFS), sands with
ripple marks (S), sandy gravels or gravelly sands (SG_GS), boulders
covered with a large concentration of Mytilus trossulus bivalves (B),
boulders covered with Mytilus trossulus and large patches of red algae
(R), and artificial structures (A), such as a shipwreck located in the
centre of the study area (Kendzierska, 2009; Tegowski et al., 2009;
Janowski et al., 2018b).
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The seabed consisted of valleys and crests with depths of approxi-
mately 2 m and lengths of dozens of metres to approximately 180 m.
The main geomorphologic structure was a large 1100 m × 500 m
moraine outcrop located in the centre of the area. Filled with glacial
tills, it was covered with areas comprising numerous boulders with red
algae vegetation. Such a hard substratum has not been typical along the
Polish coast of the Baltic Sea; however, it allowed for conditions ne-
cessary for the development of unique benthic communities, such as
Mytilus trossulus bivalves and Furcellaria lumbricalis or Polysiphonia fu-
coides red algae. Previous studies of this site have confirmed its high
ecological relevance (Kendzierska, 2009; Tegowski et al., 2009). The
area surrounding the moraine shoal appeared inhomogeneous and
consisted of sands of different grain sizes and occasional gravel ad-
mixtures. The bio- and geodiversity of this area has made it highly
suitable for the evaluation of non-invasive research methods of the
seafloor, including the determination of different acoustic character-
istics.

2.2. Data acquisition and processing

MBES datasets were acquired using a NORBIT iWBMS STX system
(manufactured by Norbit ASA: Po box 1858, Lade 7440, Trondheim,
Norway) mounted on a portable pole on the ‘Zelint’ research vessel. The
MBES device was manufactured especially for use in shallow marine
areas and typically reserved for hydroacoustic measurements from 0.2
to 160 m below sea level. At a maximum frequency of 400 kHz, the
receiving beam width was 0.9° x 0.9° and allowed for the collection of
512 beams. The MBES had an integrated WaveMaster (manufactured by
Applanix: 85 Leek Crescent, Richmond Hill, ON Canada, L4B 3B3)
Global Navigation Satellite System/Inertial Navigation System that was
supported by Real Time Kinematic/Global Positioning System correc-
tions for precise positioning and altitude measurements. Using the
Polish Active Geodetic Network - European Position Determination
System NAWGEO service (www.asgeupos.pl), we received real-time
positioning with an accuracy of 3 cm horizontally and 5 cm vertically.
In this study, the influence of acoustic absorption on the recorded sig-
nals was initially ignored; however, it was considered during post-

processing. To fulfil our research purposes, the frequency was set to
either 150 or 400 kHz, and the swath range covered 150–160°. The
maximum ping rate for both frequencies was 20 Hz, and we applied a
200 μs (for 150 kHz) and 500 μs (for 400 kHz) modulated chirp with a
bandwidth of 6 and 80 kHz, respectively. Surveys were designed in
respect to the systematic collection of five sound velocity profiles. A
constant vessel speed 2.83–3.09 m/s was maintained.

The MBES datasets were processed using QPS Qimera 1.6.3 and
Fledermaus Geocoder Toolbox 7.8.4 software, which allowed for
bathymetry and backscatter data processing, cleaning, and mosaicking.
After registration, a patch test was applied. A bathymetric grid with a
pixel size of 0.25 m × 0.25 m was calculated for both frequencies.
Because we did not find any significant differences in the MBES mea-
surements recorded at 150 and 400 kHz, we combined the frequencies
to obtain the bathymetry from a dense point cloud. The Qimera soft-
ware allowed for the manual cleaning of any outliers and/or acoustic
spikes. Backscatter grids were generated based on beam time series
(snippets) with resolutions of 0.75 m and 0.5 m for 150 kHz and
400 kHz, respectively, using a mosaicking method with an Angle
Varying Gain (AVG) correction included in the Geocoder engine
(Fonseca et al., 2009). The AVG method has been commonly utilised for
the correction of MBES angular dependency and to obtain a normalised
seafloor backscatter dataset. We applied the default settings of the AVG,
which were ‘flat’ (mode), ‘blend’ (mosaicking style), and ‘300’ (size of
processing window). The flat mode was responsible for reducing
backscatter signal noise and smoothing fine variations. The blend mo-
saicking style was responsible for the management of overlapping
MBES swaths. This allowed for the blending of the pixels along the
nadir track line of the vessel with other overlapping pixels (Schimel
et al., 2018). The window size corresponded to a specific number of
consecutive MBES pings considered for AVG correction (e.g. see
Parnum and Gavrilov, 2011). All the MBES datasets were extracted as
surface floating point files in a Universal Transverse Mercator (zone
33 N) projected coordinate system.

We applied the general workflow for benthic habitat mapping de-
veloped by Janowski et al. (2018b) to the MBES data. Hence, we ex-
tracted statistical and geomorphometric features of bathymetry, for

Fig. 1. (A) Bathymetry and (B) location of the Rowy Site in the southern Baltic Sea. For visualisation and processing purposes, multibeam echosounder (MBES)
coverage is clipped to a regular shape, omitting vessel track lines that extend beyond the rectangular area.

K. Trzcinska, et al. Marine Geology 427 (2020) 106239

3

http://www.asgeupos.pl


instance, slope and vertical ruggedness measure (Sappington et al.,
2007), bathymetric position index (Wilson et al., 2007), as well as
textural features of backscatter, such as different types of grey level co-
occurrence matrices (Haralick et al., 1973). Additionally, we derived
first- and second-order 2D spectral parameters of bathymetry. A list of
all extracted features is presented in Table 1. Features 1–23 were cre-
ated using the Benthic Terrain Modeler toolbox for ArcGIS (Walbridge
et al., 2018), features 24–39 were calculated using algorithms coded in
MATLAB, and features 40–48 were created using OBIA workflows in
Trimble eCognition software (Janowski et al., 2018b). When possible,
we tested various sizes of rectangular moving windows or scales of
image-based objects (Table 1), which enabled us to perform multi-scale
analysis of geospatial datasets to a certain extent (Misiuk et al., 2018).

2.3. Bathymetric 2D spectral parameters

Utilising 2D FFT of the bathymetric grid allowed us to generate
eight spectral parameters, which will be discussed in respect to their
predictive power for the description of seafloor geomorphology and
classification. The eight spectral parameters were zero-order spectral
moment (m0), second-order spectral moment (m2), mean frequency
(ω0), spectral width (ν2), spectral skewness (γs,), spectral skewness
defined for central moments (γs_centr), quality factor (Q-factor), and
fractal dimension (Dfft).

2.3.1. Considerations of 2D seabed spectral parameters
Assuming that the height values of the bottom surface are normally

distributed, and the surface is isotropic, the power spectral density can

Table 1
List of bathymetry and backscatter features extracted in this study.

ID Feature of bathymetry Window size ID Feature of backscatter Scale of objects

1–4 Standard deviation 3 × 3, 5 × 5, 7 × 7, 9 × 9 40 Standard deviation 1–20
5–8 Kurtosis 3 × 3, 5 × 5, 7 × 7, 9 × 9 41 GLCM Homogeneity 1–20
9–12 VRM ruggedness 3 × 3, 5 × 5, 7 × 7, 9 × 9 42 GLCM Entropy 1–20
13 Slope 3 × 3 43 GLCM Contrast 1–20
14 Variance 3 × 3 44 GLCM Standard Deviation 1–20
15 Curvature 3 × 3 45 GLCM Dissimilarity 1–20
16 Profile curvature 3 × 3 46 GLCM Correlation 1–20
17 Planar curvature 3 × 3 47 GLCM Angular Second Moment 1–20
18 Aspect 3 × 3 48 GLCM Mean 1–20
19 Eastness 3 × 3
20 Northness 3 × 3
21 Surface area to planar area (arc-chord ratio) 3 × 3
22 BPI 50 3 × 3
23 BPI 250 3 × 3
24–25 Fractal dimension (Dfft) 20 × 20, 35 × 35
26–27 Spectral moment m0 20 × 20, 35 × 35
28–29 Spectral moment m2 20 × 20, 35 × 35
30–31 Mean frequency (ω0) 20 × 20, 35 × 35
32–33 Spectral width (v2) 20 × 20, 35 × 35
34–35 Spectral skewness ∼γ( )s 20 × 20, 35 × 35

36–37 Quality factor (Q-factor) 20 × 20, 35 × 35
38–39 Spectral skewness defined for central moments (γs_centr) 20 × 20, 35 × 35

Fig. 2. Locations of ground-truth training and validation samples on multibeam echosounder (MBES) backscatter image for (A) 150 kHz and (B) 400 kHz frequencies;
S - sand, B - boulders, R - red algae on boulders, SG_GS - sandy gravel or gravelly sand, and VFS - very fine sand. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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be expressed as the following power function (Jackson et al., 1986;
Jackson and Richardson, 2007):

→
= = −W k W k k w k( ) ( , ) ,x y

γ
2 2 (1)

where
→
k k k( , )x y is the wave vector of surface inequalities, γ2 is the

exponent of the spectrum, and w2 is the spectral power of the rough
seabed surface expressed in cm4. Both the γ2 and w2 spectral parameters
comprehensively characterise the scale and degree of surface roughness
in that they are basic parameters of the physical models of sound
scattering at the bottom (APL, 1994). Measurements of the γ2 using
different techniques, such as stereophotography, laser scanning,
acoustic scanning, and mechanical stylus scanning, indicated that the
value of this parameter ranges from 2.4 to 3.9 (in most instances),
whereas the mean value is 3.25 (APL, 1994). The values of the para-
meters w2 and γ2 can be determined from the Fourier spectrum of a
rough surface, and such a method was adopted in this study.

The 2D normalised bathymetric cross spectrum s(x,y) can be re-
presented by Fourier transformation as follows:

∫ ∫=
−∞

∞

−∞

∞ −P K K s x y e dxdy( , ) ( , ) ,x y
i π K x K y2 ( , )x y

(2)

where Kx and Ky are the spatial wave numbers expressed in the cy-
cle∙m−1. The result of the transformation is a spatial spectrum of the
surface height. The 2D FFT requires subtraction of the average height

and trend removal to avoid spectral leakage. Further reduction of the
spectral leakage effect requires additional multiplication of the trans-
formed bathymetric surface by a function of the discrete prolate
spheroidal sequences spectral window, or in our case, a first-order
parameter in which NW (Slepian bandwidth parameter) = two window
widths. Our algorithm was performed on the basis of a moving window
with the dimensions of 20 m × 20 m or 35 m × 35 m with a 90%
overlap. After executing the 2D FFT, we extracted one-dimensional
(1D) cross-sections spectra from 0° to 180° (every 5°) for which we
calculated spectral parameters.

To find the specific features of the tested surface of the bottom, 1D
spectra were parameterized, and the results were averaged. For each of
the 37 spectra, spectral moments mr (Clough and Penzien, 1975) were
calculated as follows:

∫=
∞

m ω S ω dω( ) ,r
r

0 (3)

where r is the order of the moment, ω is the circular frequency, and S
(ω) is the density of the power spectrum.

The mean frequency is defined as the following equation:

=ω m m/ .0 1 0 (4)

The spectral width is calculated according to the following equa-
tion:

Fig. 3. Bathymetry and corresponding spectral parameters created using moving window with dimensions of 20 m × 20 m; (A) bathymetry; (B) zero-order spectral
moment; (C) second-order spectral moment; (D) mean frequency; (E) spectral width, (F) spectral skewness; (G) quality factor; (H) spectral skewness defined for
central moments; (I) fractal dimension.
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= −ν m m
m

1.2 0 2

1
2 (5)

It is defined as the concentration of the spectral energy density
around the mean frequency. The higher the value of average frequency,
the lower the parameter value. Furthermore, the parameter value is
higher for a wider spectrum and lower when the opposite is true. A very
sensitive parameter for changes in the shape of the surface is the
spectral skewness defined for central moments (Davidson and Louglin,
2000), which is calculated as follows:

=∼ ∼
∼γ m
m

.s
3

2
3/2 (6)

Another parameter based on 1D spectral density of power is the Dfft.
If the rough surface of the bottom has fractal properties, the ratio be-
tween the spectrum S(f) and the frequency f takes the form of an ex-
ponential relation for the frequency interval f (Mandelbrot, 1982) as
follows:

= −S f K f( ) · ,β (7)

where K is a constant, and β is the exponent of the power function. The
spectrum slope is calculated by linear regression. The Dfft is defined as
follows:

=
−

D
β5

2
.FFT (8)

Additionally, the Q-factor, which is a combination of spectral mo-
ments, can be also calculated with the following equation:

⎜ ⎟= ⎛
⎝

−
∙

⎞
⎠

Q
m

m m
1 .1

2

0 2

0.5

(9)

The Q-factor is a measure of spectrum peak ‘sharpness’. For the 1D
spectra obtained in this way, the eight spectral parameters defined
above were calculated. Whereas spectral parameters created with a
moving window size of 20 m × 20 m had a resulting pixel resolution of
2 m × 2 m, parameters generated with the larger window size
(35 m × 35 m) had a pixel resolution of 3.5 m × 3.5 m.

2.4. Ground-truth data acquisition and processing

Ground-truth samples were acquired with a remotely operated ve-
hicle (ROV) and a Van Veen grab sampler. Samples were retrieved
during three surveys on 7 September 2018, 20–23 November 2018, and
21–25 January 2019. Based on previous research in this area, as well as
backscatter acoustic characteristics, the locations were carefully chosen
in a representative way to capture all the properties of the seabed
(Tegowski et al., 2009). ROV video recordings were collected in more

Fig. 4. Bathymetry and corresponding spectral parameters created using moving window with dimensions of 35 m × 35 m; (A) bathymetry; (B) zero-order spectral
moment; (C) second-order spectral moment; (D) mean frequency; (E) spectral width, (F) spectral skewness; (G) quality factor; (H) spectral skewness defined for
central moments; (I) fractal dimension.
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Fig. 5. Results of Boruta feature selection algorithm for all parameters used in this study.
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than half the sites, allowing for the investigation of the locations and
surrounding areas. Sediment samples were collected from 46 sites, and
they were classified using the methods of Folk and Ward (1957), as well
as the Wentworth method (Wentworth, 1922).

From the 57 ground-truth samples, 29 were chosen for the training
of supervised classifiers, and 28 were used to test the classification
performance. The split was performed based on random single splitting.
Our split for the training/test samples was targeted to obtain better
prediction performance than that of model fitting. Fig. 2 presents the
locations of the ground-truth samples used for training and validation
with reference to the MBES backscatter. Note that the A benthic habitat
class is omitted in Fig. 2 because of its presence in only one specific site.
It was, therefore, classified manually at the conclusion of the supervised
classification process, based on the exact location of the shipwreck
visible on the MBES bathymetry and ROV video datasets.

2.5. Image analysis for predictive habitat mapping

To evaluate the importance of individual features we applied the
Boruta feature selection algorithm (Kursa and Rudnicki, 2010) based on
the random forest (RF) machine learning algorithm by Breiman (2001).
The algorithm belongs to the wrapper feature selection methods that
evaluate the performance of a certain model after searching for all
possible feature selections. Typically, wrapper methods aim to mini-
mise prediction error, and because of this, they belong to common
minimal-optimal feature selection methods as well (Kursa, 2016). The
wrapper is implemented in R software using the ‘Boruta’ library. The
wrapper method iteratively evaluates sets of different input features
and calculates a Z-score, which is indicative of feature importance. Each
evaluation is done by the introduction of other irrelevant features that
are treated as a reference for the assessment of the original features.

The Z-score is calculated based on the RF method during the training of
the classifier (Breiman, 2001). Based on the feature importance mea-
sure, feature selection is performed iteratively, successively removing
irrelevant features. To exclude tentative (unallocated) features, the
maximum number of Boruta iterations was set to 5000. Although our
aim was to identify all relevant features, including weakly relevant ones
(Nilsson et al., 2007), we allowed the possibility of refinement if some
were correlated. To remove highly correlated features, a correlation
analysis was performed in the R software using a ‘caret’ package. Fea-
tures with an absolute Pearson's correlation of 0.75 or higher were
removed.

In this study, we used Trimble eCognition software to conduct an
OBIA. This image processing technique was developed in the 2000s to
manage an increasing number of high-resolution remote sensing images
containing larger amounts of heterogenous information (Blaschke,
2010). Through a multiresolution segmentation (MS) algorithm, the
OBIA merged similar pixels of an image into groups of uniform shapes
and sizes (Benz et al., 2004). MS had various parameters that we de-
fined and tested to generate meaningful image objects. Whereas the
colour parameter corresponded to the relative values of the MBES
backscatter intensity, the associated parameter (shape) was related to
the ratio between compactness and smoothness. Compactness referred
to the ratio between the segment border length and the square root of
the pixel count within. Smoothness was related to the ratio between the
border length of the segment and its bounding box (Benz et al., 2004).
Both weighted pairs of parameters were determined with values of 0.1
to 0.9, and the total value of each pair was 1. The MS parameters of
shape and compactness were defined as 0.1 and 0.5, respectively. We
also tested 1–20 scale parameters of MS that were responsible for the
termination of the merging process of the image objects. Segmentation
was performed to delineate image objects based equally on two

Fig. 6. Results of correlation matrix for features se-
lected in this study; backscatter 150 kHz (bs150khz);
backscatter 400 kHz (bs400khz); spectral skewness
defined for central moments (20; SpSk_c_2); spectral
moment m0 (35; m0_3_5); spectral moment m2 (35;
m2_3_5); bathymetry (bath); Q-factor (35; Q_3_5);
fractal dimension (35; Dfft_3_5); spectral width (35;
sp_w_3_5); fractal dimension (20; Dfft_2); spectral
skewness (35; SpSk_3_5).
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backscatter derivatives, namely, 150 kHz and 400 kHz.
Similar to other benthic habitat mapping studies, a few supervised

classification approaches were tested to generate predictive outcomes
based on ground-truth samples (Diesing et al., 2014; Hasan et al., 2012;
Montereale Gavazzi et al., 2016). In this study, they included k-nearest
neighbours (KNN), classification and regression trees (CART), RF, and
support vector machines (SVM). We implemented these algorithms,
which were available in the eCognition software. The KNN classified a
specified object (query point) by a certain number (K) of known
training samples that were located at the nearest neighbour around the
query point. Euclidean distances (between the object and each instance)
were calculated in the feature space to estimate the influence area of
the neighbours. The KNN classification algorithm has been described in
detail by Bremner et al. (2005). CART makes classification rules by
recursively partitioning the data into increasingly homogenous groups.
The algorithm created a decision tree that was associated with a system
of questions and answers, thereby allowing the determination of the
final classification (Breiman et al., 1984). RF was the machine learning

method used for classification, regression, and other tasks, which con-
sisted of constructing multiple decision trees that generated the class
dominant or predicted average of individual trees (Breiman, 2001).
SVM based on the machine learning technique used an algorithm that
transformed datasets into a multidimensional feature space to find the
appropriate boundary between them. Data points were called vectors,
and the vectors that supported border selection were called support
vectors. Machine learning models that use support vectors have been
called SVM (Cortes and Vapnik, 1995).

We used validation ground-truth samples to create error matrices
and calculate accuracy assessment statistics (Foody, 2002). These in-
cluded the accuracy of the user and producer (Congalton, 1991; Story
and Congalton, 1986), overall accuracy, and kappa index of agreement
(Cohen, 1960).

Fig. 7. Comparison between (A) backscatter 400 kHz grid and (B) classification results for all relevant features; (C) uncorrelated features; and (D) only primary
features. S - sand, B - boulders, R - red algae on boulders, SG_GS - sandy gravel or gravelly sand, and VFS - very fine sand. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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3. Results

3.1. Spectral parameters of bathymetry

The processed MBES bathymetry was presented in Fig. 1, and the
co-registered backscatter for both frequencies was shown in Fig. 2.
Figs. 3 and 4 show the bathymetry and its eight derived spectral
parameters for moving windows of 20 m × 20 m and 35 m × 35 m,
respectively.

Visual insight for the created parameters demonstrated that several
could match the geomorphologic features of bathymetry, especially a
few spectral parameters (e.g. m0, m2, and spectral skewness defined for
central moments) redrawn with specific features such as valleys and
crests (Figs. 3 and 4). Moreover, the comparison of MBES backscatter
(Fig. 2) showed a rough similarity to seabed areas of strong absorption
or backscattering (visible as Dfft).

3.2. Ground-truth data processing

Six benthic habitat classes were determined, and they included VFS,
S, SG_GS, B, R, and, A. The extensive identification of the benthic ha-
bitats with reference to MBES backscatter in this area was described by
Janowski et al. (2018b).

3.3. Feature selection

The results of the Boruta feature selection are presented in Fig. 5.
The algorithm performed 612 iterations and confirmed 11 features as
important. The most important feature in this study was 400 kHz
backscatter; this was followed by 150 kHz backscatter, Dfft (35), Dfft
(20), spectral skewness defined for central moments (20), Q-factor (35),

spectral skewness (35), bathymetry, spectral moment m0 (35), spectral
width (35), and spectral moment m2 (35). The Boruta results indicated
that certain spectral parameters were of greater significance than
bathymetry, from which they were derived. This was especially visible
in the Dfft parameter, which had a importance score approximately
twice as great as that of bathymetry. It was also noteworthy that all the
other extracted features (including the geomorphometric, statistical,
and textural features) of the MBES bathymetry and backscatter were
not considered important. Our initial results suggested the relevance of
multi-frequency MBES; in other words, the first and second most im-
portant features were backscatter collected at different frequencies. The
correlation analysis removed six highly correlated features, as shown in
Fig. 6. The retained features were 400 kHz backscatter, bathymetry,
spectral skewness defined for central moments (20), Q-factor (35), and
spectral moment m2 (35).

From the twenty scales of MS and four methods of supervised
classification, the best classification performance was found with MS 8
and the SVM classifier. We adopted the following properties of the SVM
classifier: radial-basis function kernel with C factor 100 and gamma 0.1.
We created three predictive models using the following sets of features:
(1) all relevant; (2) uncorrelated; and (3) only primary features
(backscatter 400 kHz and bathymetry). The predictive benthic habitat
maps generated using this approach are shown in Fig. 7.

The error matrix and accuracy assessment of the predictive habitat
mapping method are presented in Table 2. Based on the validation
subset of the ground-truth samples, the model with all relevant features
confirmed a high performance that achieved a prediction accuracy of
86% and a Kappa index of agreement of 0.82. The second model, which
considered only uncorrelated features, also achieved high accuracy;
however, in comparison with the previous map, it misclassified one
validation sample. The reference model without spectral features had
an overall accuracy of 64% and a Kappa index of agreement of 0.55.
Taking the accuracy of the user and producer into consideration, the
two best-performing models were in reasonable agreement for specific
classes, such as VFS, S, and R. We performed McNemar's chi-squared
test for the statistical significance of differences in overall accuracy
between the three models (Foody, 2004). The test result for differences
between all relevant and uncorrelated features was 0.0. It means that
the difference between these two models is statistically insignificant at
the 5% level of significance. The McNemar's chi-squared test for dif-
ferences between all relevant and only primary features models was
4.17 with p-value = .04, while the same test between uncorrelated and
only primary features was 3.2 with p-value = .07. Mentioned results
mean that there was a significant difference in the accuracy between all
relevant and only primary features models and lack of significant dif-
ference between uncorrelated and only primary features models at the
5% level of significance.

4. Discussion

In this study, we introduced eight spectral features of a rough sea-
floor surface. The significance of the spectral features was evaluated
and expressed using an importance score. We built and estimated the
accuracy of three models of benthic habitat mapping, thereby demon-
strating that the majority of introduced spectral features (i.e. seven out
of eight) could improve the predictive power of supervised classifiers.

This study emphasised the importance of spectral parameters de-
rived from bathymetry for predictive benthic habitat mapping based on
multi-frequency MBES measurements. We did not observe significant
differences in the bathymetry between both datasets (150 and
400 kHz). However, moderate differences existed in the backscatter of
both frequencies, thus supporting the usefulness for a multi-frequency
approach. We assumed that consistency in the bathymetry gathered
with different frequencies was valid for sandy and gravelly sediments,
as well as hard substrates. However, substantial depth differences in
softer sediments could occur when significant acoustic penetration

Table 2
Error matrices and accuracy assessment statistics for three benthic habitat
models.

All relevant features Reference

S SG_GS B R VFS Sum

Prediction S 7 0 0 0 0 7
SG_GS 0 2 0 0 0 2
B 1 2 7 1 0 11
R 0 0 0 3 0 3
VFS 0 0 0 0 5 5
Sum 8 4 7 4 5
Producer's 0.875 0.5 1 0.75 1
User's 1 1 0.636 1 1
Overall Accuracy 0.857
KIA 0.815

Uncorrelated S SG_GS B R VFS Sum
Prediction S 6 0 0 0 0 6

SG_GS 0 2 0 0 0 2
B 2 2 7 1 0 12
R 0 0 0 3 0 3
VFS 0 0 0 0 5 5
Sum 8 4 7 4 5
Producer's 0.75 0.5 1 0.75 1
User's 1.000 1.000 0.583 1 1
Overall Accuracy 0.821
KIA 0.769

Only primary features S SG_GS B R VFS Sum
Prediction S 6 0 0 0 2 8

SG_GS 1 2 3 1 0 7
B 1 2 4 0 0 7
R 0 0 0 3 0 3
VFS 0 0 0 0 3 3
Sum 8 4 7 4 5
Producer's 0.75 0.5 0.571 0.75 0.6
User's 0.75 0.286 0.571 1 1
Overall Accuracy 0.643
KIA 0.545
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occurs (Schneider von Deimling et al., 2013). Furthermore, the beam
resolution was linked with the frequency using one acoustic array with
lower beam resolution when using lower frequencies. This could have
affected the bathymetric results presented in this study.

A visual comparison of the spectral parameters (particularly Dfft)
indicated a high similarity between certain features of the multibeam
backscatter datasets. Remarkably, the Boruta results showed that the
spectral parameters of bathymetry, in general, had a greater sig-
nificance than bathymetry itself. If the spectral parameters could match
certain types of seabeds, they could be very useful for benthic habitat
mapping at times when only MBES bathymetry is available. This study
highlighted that the implementation of these spectral parameters could
significantly improve supervised classification and benthic habitat
mapping.

Other research of the Rowy Site demonstrated high applicability of
the KNN and RF methods of classification (Janowski et al., 2018b). On
the other hand, in this study, we obtained the best prediction perfor-
mance with the SVM technique. Additional ground-truth samples were
available for this study, thereby doubling the amount in relation to
previous research (Janowski et al., 2018b). Increasing the number of
samples provided a more realistic reference. Therefore, the predictions
presented in this study could be considered as more robust.

The spectral analyses of surfaces, including Dfft, have already been
applied in the analyses of seafloor data (Goff et al., 1999; Wilson et al.,
2007) for morphological description. However, geomorphometry has
been applied to the terrestrial environment very intensely (e.g. Sofia
et al., 2016). Spectral analysis of the land surface has been used by
geomorphologists; for example, Hutchinson and Gallant (2000) ex-
plored the usefulness of using numerical geomorphometric methods in
terrain shape analysis. In the marine realm, studies using the auto-
covariance function of multibeam bathymetry successfully char-
acterised the widths of morphological structures such as abyssal hills
and continental slope canyons (Goff and Jordan, 1988; Goff, 2001).
However, it was not determined as to what the size of the processing
window of the spectral parameters should be for useful classification.
This issue should be investigated further. The analysis of the spectral
features, such as lidar data, from other sources of DEMs would be an-
other topic worth exploring.

An MBES currently allows for the registration of absolute (cali-
brated) backscattering strength values; however, uncalibrated back-
scattering is still the most commonly used of these two measurement
types. There is a need for calibrated systems with accurate hydro-
acoustic measurements so that data from different registrations can be
compared. Because backscatter is dependent upon frequency, it can also
be a disadvantage when compiling various datasets. In turn, the
bathymetric spectral features represent absolute values, and therefore,
they are reliable and easy to compare with measurements from other
datasets. Spectral parameters are generally not dependent on the op-
erating frequency of the MBES when the effects of sediment penetration
can be excluded. However, taking such spectral features into account
requires a high quality MBES bathymetry dataset and precise motion
compensation. Any vessel motion artefacts can interfere, or ‘leak’, into
the spectral features when they are not compensated. However, modern
motion compensation systems work well correcting these errors. The
dataset presented in this study was recorded on a vessel with a length of
8 m and width of 3 m at a sea state between 2 and 4. Despite un-
favourable weather conditions for such a small vessel, the surveys
yielded valuable results.

Because our study site was characterised by complex geomorpho-
logical features, we can ascertain that the presented method of pre-
dictive benthic habitat mapping could be especially valuable in other
areas with diverse morphology (e.g. reefs). Considering a broader
perspective, the spectral analysis of seafloor bathymetry could provide
new insight into the analyses of DEMs of other sources, such as gravity
models (Smith and Sandwell, 1997), which would allow for the ex-
ploration and interpretation of large scale complex geomorphological

features, including volcanic structures, seamounts, or mid-ocean ridges.
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